Efficient Spatio-Temporal Data Association Using Multidimensional Assignment in Multi-Camera Multi-Target Tracking
نویسندگان
چکیده
This paper proposes a novel multi-target tracking method which jointly solves a data association problem using images from multiple cameras. In this work, the spatiotemporal data association problem is formulated as a multidimensional assignment problem (MDA). To achieve a fast, efficient, and easily implementable approximation algorithm, we solve the MDA problem approximately by solving a sequence of bipartite matching problems using random splitting and merging operations. In this formulation, we design a new cost function, considering the accuracy in 3D reconstruction, motion smoothness, visibility from cameras, starting/ending at entrance and exit zone, and false positive. Our approach reconstructs 3D trajectories that represent people’s movement as 3D cylinders whose locations are estimated considering all adjacent frames. The experiments illustrate the proposed method shows the state-of-the-art performance in challenging multi-camera datasets and the computational efficiency with 8 times faster computation than the existing BIP approach.
منابع مشابه
Efficient Spatio-Temporal Data Association Using Multidimensional Assignment for Multi-Camera Multi-Target Tracking
This paper proposes a novel multi-target tracking method which jointly solves a data association problem using images from multiple cameras. In this work, the spatiotemporal data association problem is formulated as a multidimensional assignment problem (MDA). To achieve a fast, efficient, and easily implementable approximation algorithm, we solve the MDA problem approximately by solving a sequ...
متن کاملMachine Learning Methods for Solving Assignment Problems in Multi-Target Tracking
Data association and track-to-track association, two fundamental problems in single-sensor and multi-sensor multi-target tracking, are instances of an NP-hard combinatorial optimization problem known as the multidimensional assignment problem (MDAP). Over the last few years, data-driven approaches to tackling MDAPs in tracking have become increasingly popular. We argue that viewing multi-target...
متن کاملMulti-target Data Association by Tracklets with Unsupervised Parameter Estimation
We consider multi-target tracking via probabilistic data association among tracklets (trajectory fragments), a mid-level representation that provides good spatio-temporal context for efficient tracking. Model parameter estimation and the search for the best association among tracklets are unified naturally within a Markov Chain Monte Carlo sampling procedure. The proposed approach is able to in...
متن کاملMulti-camera Multi-Object Tracking
In this paper, we propose a pipeline for multi-target visual tracking under multi-camera system. For multi-camera system tracking problem, efficient data association across cameras, and at the same time, across frames becomes more important than single-camera system tracking. However, most of the multi-camera tracking algorithms emphasis on single camera across frame data association. Thus in o...
متن کاملClutter Removal in Sonar Image Target Tracking Using PHD Filter
In this paper we have presented a new procedure for sonar image target tracking using PHD filter besides K-means algorithm in high density clutter environment. We have presented K-means as data clustering technique in this paper to estimate the location of targets. Sonar images target tracking is a very good sample of high clutter environment. As can be seen, PHD filter because of its special f...
متن کامل